Positioning Technologies for GPS-Challenged Locations

Subbu Meiyappan
Co-Founder and Vice President of Hardware Engineering
NextNav, LLC

December 27, 2012
Agenda

1. Why Indoor Positioning?
2. Indoor Positioning Challenges
3. State of the Art in Indoor Positioning
4. NextNav Company Overview
5. NextNav Technology Overview
6. NextNav Positioning Technology Challenges
7. NextNav Positioning Technology Results
8. Summary
Why Mass-Market Indoor Positioning?

- Over 400,000 E911 calls are placed from wireless devices – every day
 - Over 34% of all households, and 50% of rental households, lack a land line
 - Without verbal assistance, first responders can not be dispatched unless the device can be located

- Smartphones are increasingly relied on to augment the perception of their users
 - Outdoor navigation has been “solved” by GPS
 - Some information is available virtually instantly – but position indoors, on an accurate map, remains a general estimate

- The economic opportunity of indoor positioning is extraordinary
 - Location-based mobile advertising is expected to exceed $7Bn in the U.S. by 2016
 - Smartphones are now part of consumers’ purchase cycle – 44% of local searches on a smartphone lead to a purchase, and mobile commerce is expected to reach $30Bn by 2016

- Enterprise applications, including workforce management, public safety services, and M2M applications increasingly demand indoor positioning capabilities
 - Mass-market features such as ubiquitous coverage and high performance are just as desirable, and useful, for enterprise applications
Existing E911 Rules (Outdoor)
In a Complex Interior Floor Level Accuracy is Necessary
The Fundamental Indoor Positioning Challenge

The GPS signal is too weak for reliable indoor positioning.
Related Issues

• Indoor environments are complex and require very high accuracy

• Localized solutions do not provide pervasive reliability or availability
 – Imagine if turn-by-turn directions for your car only worked in every other neighborhood

• Network architecture, signal attenuation and multi-path increase the difficulty of deploying a wide-area solutions

• Cost considerations have, so far, prevented the deployment of dedicated positioning systems outside of specialized enterprise applications
 – Infrastructure expense
 – Receiver complexity
 – Coverage scale
Positioning Technology State of Affairs

There is no reliable, high-precision solution where mobile devices are used today.

Areas of Use

- Urban Canyon
- Outdoors
- Indoors

Accuracy

- GPS
- Wi-Fi
- Cell-ID
- A-GPS + AFLT

The missing piece....
Technologies

• Cell ID and its derivatives
• Cellular infrastructure-based trilateration techniques – AFLT, U-TDOA and O-TDOA
• RF Fingerprinting
• WiFi and BlueTooth-based positioning
• Sensor fusion
• Selected emerging technologies
 – Magnetic field characterization
 – Visual location technologies
 – Other satellite-based systems (e.g., Boeing / Iridium)
Location Techniques: Cell ID

Cell Tower

- 2 – 10km

Cell Sector

- 2 – 10km

Centroid of Cell Sector

- 1 – 5 km

Pros:
- Always available
- Fast TTFF
- Something is better than nothing

Cons:
- Poor accuracy
- No height information

\(X = \text{reported position} \)
Location Techniques: U-TDOA, AFLT and O-TDOA

Pros:
- Service indoors and in urban areas
- Fast TTFF
- Better than Cell ID
- Can be combined with GPS in some cases

Cons:
- Poor geometry
- Poor siting of infrastructure
- Poor synchronization
- No height capability
- DAS uncertainty
RF Fingerprinting

Pros:
- Service indoors and in urban areas
- Fast TTFF
- Better than Cell ID
- Can be combined with GPS in some cases

Cons:
- Constant maintenance
- SON network considerations
- Accuracy limited by granularity and age of direct calibration
WiFi and Bluetooth Based Positioning

Pros:
- Service indoors and in urban areas
- Fast TTFF
- Can be very accurate

Cons:
- Managed infrastructure is very expensive
- Unknown location of transmitters
- No control over infrastructure
- Very high site density required for very high accuracy
- High variability in performance
- Coverage varies
Sensor Fusion

• Sensor do not provide positioning information, but can be used in conjunction with other radiolocation technologies

• Key principle is using information from gyros, accelerometers and compass to assist in track determination

• With persistent radio information, sensors have been demonstrated to be able to correct a track for a short time duration
 – Detects motion and prevents large jumps in position
 – Radio inputs can assist in preventing the significant drift associated with consumer-grade sensors over short horizons

• Requires a good initial starting positioning – sensors are of no use in determining absolute location, only offsets
Technology Summary

<table>
<thead>
<tr>
<th>Technology</th>
<th>Status</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>Mature</td>
<td>• Doesn’t work indoors!</td>
</tr>
<tr>
<td>Cell ID</td>
<td>Mature</td>
<td>• Extremely coarse accuracy</td>
</tr>
<tr>
<td>Cellular trilateration</td>
<td>Mature</td>
<td>• Synchronization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Site characterization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coverage and capacity considerations (e.g., DAS, overall architecture)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multipath</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accuracy</td>
</tr>
<tr>
<td>RF Fingerprinting</td>
<td>Mature</td>
<td>• High maintenance costs / unstable performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accuracy</td>
</tr>
<tr>
<td>WiFi / BlueTooth</td>
<td>Mature</td>
<td>• Very high infrastructure costs associated with highest performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unmanaged systems have insufficient accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coverage considerations</td>
</tr>
<tr>
<td>Sensor Fusion</td>
<td>Emerging</td>
<td>• Doesn’t provide absolute location, only can condition a track</td>
</tr>
</tbody>
</table>

© 2012 NextNav LLC Confidential. Protected under NDA.
NextNav Overview

• NextNav is a network services provider deploying a nationwide system to provide reliable, high-precision positioning information in urban and indoor environments

• Owned assets and wide-area architecture provide defined technology evolution path and certainty of service availability

• Experienced team has a long and successful history in network deployment, operations and location technology, and has raised billions in capital

• Backed by Columbia Capital, Telcom Ventures and Goldman Sachs, well-funded investors with rich domain expertise
What Is The Ideal Solution?

- High accuracy in urban and indoor environments
- High reliability, high yield and pervasive coverage (ubiquitous scale)
- Low time to first fix and reduced power drain
- On-device location computation (personal privacy)
- Minimal device, core network impact and application impact

A network of high-power GPS satellites on the ground would satisfy all of these requirements
NextNav Metro Overlay Deployment

Performance Advantage
- Precise location in urban and indoor environments
- Accurate vertical position (1-3m)
- Fast time to first fix
- Dependable “carrier-grade” performance

Broadcast Beacons
- Low-power, highly synchronized
- Encrypted signal
- Broad coverage from minimal sites
- No backhaul, small form factor
- Operate on licensed spectrum

Core Network
- Utilizes existing PDE, SUPL elements
- Modifications to support NextNav information
- Similar to “Standalone GPS Mode” call flows

Receivers
- Firmware upgrade to “typical” GPS chipsets
- Minimal handset integration cost
- On-device computation of location
- Reduced power consumption

© 2012 NextNav LLC. All Rights Reserved. CONFIDENTIAL UNDER NDA
Challenges of Terrestrial Positioning Transmitters

• Deployment Challenges
 – Radio planning for coverage and DOP
 – Leasing, Zoning and Permitting, Construction and Maintenance

• Timing accuracy
 – 1ns ↔ 1 ft
 – Calibration of hardware delays including field terminated cables
 – Calibration of precise lat/long/alt of the transmit antenna
 – Timing synchronization between the beacons
 – Antenna selection
 – Antenna siting
 – Variations across temperature
 – Ageing
 – Part to Part variations

• Data or Dedicated Positioning Service (PRS on LTE)?

• Near – far issues

• VDOP
Challenges of Terrestrial Positioning Receivers

• Yet Another Radio Receiver (YARR) on the handset?
• Co-existence with powerful radios adjacent in frequency and space
• Computational challenges w.r.t power consumption
• Multipath Challenges
 – Resolvability
 – Availability of LoS path
 – Discern between correlation side lobes and multipath peaks
 – Early path estimation algorithms
 – Time-varying multipath
Measurement data from the field
Correlation function amplitude for various scenarios
Some challenging real-world correlation functions
Histograms of range errors
Range error histogram at a high elevation/outdoor Rx location

- Histogram
- Range error (m)

Legend:
- Tx 1
- Tx 2
- Tx 3
- Tx 4
- Tx 5
- Tx 6
- Tx 7
- Tx 8
- Tx 9
- Tx 10
- Tx 11
- Tx 12
- Tx 13
- Tx 14
- Tx 15
- Tx 16
- Tx 17
- Tx 18
- Tx 19
- Tx 20
- Tx 21
- Tx 22
- Tx 23
- Tx 24
- Tx 25
- Tx 26
Indoor Accuracy Performance

- Results across suburban/urban environment
 - Offices
 - Hotels
 - Malls
 - Homes
- Indoor results only
- ~100 locations and 5,000 data points

CDF

Z-D position error (m)

50%/ 68%/ 90%

Metropolitan - Indoor (20m/ 26m/ 47m)
Floor-Level Height Accuracy

NextNav is building the nation’s first high precision, real time barometric pressure calibration network
Summary

• NextNav is deploying a revolutionary wide-area positioning system
 – Fully managed network brings high-precision, reliable location indoors
 – Underlying technology requires minimal chipset and device integration
 – Encrypted signals allow management of access to technology
 – Shared network allows multiple customers, for different services (e.g., E911, commercial)

• Mobile services and devices are increasingly dependent upon location
 – Advertising is following data traffic to mobile platforms, but with remarkable new capabilities in “aware” user terminals
 – Location is being embedded in commerce and popular social networking applications; it could be embedded in nearly ALL mobile applications

• Public Safety has recognized that the existing standards for E911 location accuracy are inadequate

• NextNav brings “carrier grade” ubiquity, reliability and accuracy to location