Wireless Backhaul Trends: The Future Role of Wireless, Fiber Optics, and Copper Wire

Jonathan Wells PhD MBA
President, AJIS LLC

8th October 2008
Agenda

- An overview of mobile backhaul
- Disruptive forces
- Industry trends
- Backhaul technologies
- Conclusions
Mobile Backhaul Overview
Huge Cellular Phone Advances
Cellular Evolution

Dr. Martin Cooper of Motorola - “father” of the modern mobile phone - has observed:

The number of simultaneous voice and data connections has doubled every 2.5 years since wireless began (1900)

Cooper’s Law
What is Mobile Backhaul?

“Access”

“Transport”

“Transmission”
Typical Mobile Backhaul Network

BST: Base Station, RPTR: Repeater Site, HUB: Hub Site, MSC: Mobile Switching Center
Some Facts

- **Globally**
 - Over 2.5M cell sites
 - 2007 backhaul spending: $20B services, $4B equipment
 - Wireless backhaul dominates

- **USA**
 - About 200,000 cell sites
 - Cell site growth >10% pa for last 5 years
 - 80-90% copper T1s, ~15% fiber

Source: Heavy Reading, Nov 2007
Disruptive Forces
Mobile Subs Increasing ...

- Over 1 B new phones sold annually
- Even market for used phones

Worldwide Mobile Subscribers

Source: Infonetics Research, March 2009
... Mostly In Developing Countries
Carriers Actively Courting Low ARPU Users

Today’s challenge: connecting the next billion

4 billion mobile subscriptions 2009
3 billion mobile subscriptions 2007

World population split according to income segment (USD per capita per day)
Number of Cell Sites Growing

Source: Infonetics Research
Consumer Patterns Changing

- Emerging traffic drivers
 - More content generated outside traditional carrier network
 - Open devices drive significantly more traffic
 - iPhone model fundamentally changing carriers business
 - “All you can eat” pricing encourages high traffic usage
Examples

- iPhone
 - Data contract required
 - Stunning traffic growth, despite small market share
 - Christmas 2007: Google traffic from iPhones exceeded traffic from all other mobile devices combined

- Blackberry
 - Significant growth in network traffic since 2007 Facebook application launch
New Technologies Drive Higher Data Rates …

Source: Alcatel-Lucent, 2008
And Bigger Channels Sizes

<table>
<thead>
<tr>
<th>System</th>
<th>Peak data rate</th>
<th>Channel Width</th>
<th>Frequency reuse</th>
<th>Peak Spectral efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPS</td>
<td>9.6 kbps</td>
<td>30 kHz</td>
<td>7 / 21</td>
<td>0.015</td>
</tr>
<tr>
<td>GSM</td>
<td>9.6 – 14.4 kbps</td>
<td>200 kHz</td>
<td>4 / 12</td>
<td>0.032 - 0.048</td>
</tr>
<tr>
<td>GPRS</td>
<td>171 kbps</td>
<td>200 kHz</td>
<td>4 / 12</td>
<td>0.07</td>
</tr>
<tr>
<td>EDGE</td>
<td>474 kbps</td>
<td>200 kHz</td>
<td>4 / 12</td>
<td>0.2</td>
</tr>
<tr>
<td>W-CDMA</td>
<td>2 Mbps</td>
<td>5 MHz</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>HSDPA</td>
<td>14 Mbps</td>
<td>5 MHz</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>LTE</td>
<td>100 Mbps</td>
<td>20 MHz</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>HSDPA+ 64QAM & 2x2 MIMO</td>
<td>42 Mbps</td>
<td>5 MHz</td>
<td>1</td>
<td>8.4</td>
</tr>
<tr>
<td>LTE 2x2 MIMO</td>
<td>172.8 Mbps</td>
<td>20 MHz</td>
<td>1</td>
<td>8.6</td>
</tr>
<tr>
<td>LTE 4x4 MIMO</td>
<td>326.4 Mbps</td>
<td>20 MHz</td>
<td>1</td>
<td>16.3</td>
</tr>
</tbody>
</table>
Increased Cell Site Backhaul

Backhaul Capacity Required per Cell Site

Source: Heavy Reading, 2008
Increased Backhaul CAPEX

Worldwide Mobile Backhaul Equipment* Revenue

Calendar Year

Revenue (US$Billions)

CY07 CY08 CY09 CY10 CY11

$0B $4B $8B $12B

*Equipment includes Ethernet copper/fiber, Ethernet microwave, PDH/SDH microwave, PDH MIU, SONET/SDH, and other

Revenue & Traffic Decoupled

- Voice generates 80% revenue
- Data traffic >> voice traffic

Costs follow traffic line!
Summary of Fundamental Shifts

- Mobile subscribers and their bandwidth requirements are growing strongly
 - Mobile users going broadband; broadband users going mobile
- Data traffic grows and video coming
- 2G and 3G collocation at same cell site
- Multiple operators at same cell site
- WiMAX and LTE coming

Current backhaul networks are a major bottleneck
Industry Trends
Shift Towards Ethernet

- Scalable Costs
- T1 costs linear
 - $300 pm per T1
- Ethernet non-linear
 - $75/Mbps pm for 10 M
 - $20/Mbps pm for 100 M
 - $3/Mbps pm for 1 G

Source: Axerra Networks, 2008
Ethernet Backhaul Challenges

- “Five Nines”
- Synch/timing
- Legacy integration

- Bandwidth
- Lower cost
- Flexibility

- Hard & soft handover
- Sectorization
- Spectrum efficiency
- Radio resource management

Optimized Ethernet Backhaul
Metro Ethernet Forum (MEF)

The 5 Attributes of Carrier Ethernet

Carrier Ethernet is a ubiquitous, standardized, carrier-class SERVICE defined by five attributes that distinguish Carrier Ethernet from familiar LAN based Ethernet.

Carrier Ethernet Attributes:
- Standardized Services
- Scalability
- Service Management
- Reliability
- Quality of Service

Source: Metro Ethernet Forum
Expect Rapid Ethernet Growth

- Microwave is king
- Ethernet fastest growing
- Equipment revenue
 - 2006 = $3.9B
 - 2010 = $6.0B

Source: Infonetics Research Mobile Backhaul Equipment, Installed Base & Services, March 2007
Collocation of 2G and 3G Sites

- ~80% of 3G cell sites are collocated with 2G cell sites
- 2G could be here for another 10 years!

Source: Alcatel-Lucent 2006
Mixed Mode (Hybrid) Networks

- **2G network**

- **2G + 3G network**
A Few T1s are OK, For Now

- Most cell sites today are serviced by 1 to 4 T1s (1.5 Mbps to 6 Mbps)
- The amount of backhaul required is function of 2 parameters
 - Amount of wireless spectrum available
 - Spectral efficiency of the wireless interface.
- Examples: 3-sector cell sites

<table>
<thead>
<tr>
<th>Technology</th>
<th>Spectrum</th>
<th>Backhaul</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G GSM</td>
<td>1.25 MHz</td>
<td>< 1 T1</td>
</tr>
<tr>
<td>2.5G EDGE</td>
<td>3.5 MHz</td>
<td>4 T1</td>
</tr>
<tr>
<td>3G HSDPA</td>
<td>5 MHz</td>
<td>13 T1</td>
</tr>
</tbody>
</table>
But LTE and WiMAX Coming

- LTE and WiMAX → 100+ Mbps
- Different service offerings require more dedicated bandwidth

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Bandwidth Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet connection</td>
<td>10:1 to 25:1</td>
</tr>
<tr>
<td>Voice service</td>
<td>5:1 to 10:1</td>
</tr>
<tr>
<td>Online gaming</td>
<td>5:1 to 10:1</td>
</tr>
<tr>
<td>Video conference</td>
<td>1:1 to 2:1</td>
</tr>
<tr>
<td>Video broadcast</td>
<td>1:1 (no contention)</td>
</tr>
<tr>
<td>Audio broadcast</td>
<td>1:1 (no contention)</td>
</tr>
<tr>
<td>Video on demand</td>
<td>1:1 (no contention)</td>
</tr>
</tbody>
</table>
Cell Size Reductions

- 1980s: Macro cells – 35 km radius
- 1990s: Micro cells – 5 km radius
- Currently: Average distance between US cell sites
 - Urban: 1.7 km
 - Suburban: 3.8 km
 - Rural: 12.5 km
- Current vogue is to talk about femtocells – 10m radius
 - Femtocells = Home Base Stations
 - End-user deployed, but subject to operator control
 - Very controversial
 - Break long-standing regulatory assumptions
 - Seriously challenge current business models
 - Considerable challenges in managing interference due to uncoordinated end-user deployment
Technology Solutions
Pseudowires

- Pseudowire (PW) emulates the operation of a “transparent wire”, carrying a native service over a Packet Switched Network (PSN)
Pseudowire - Pros

- Lower network costs – fewer boxes
- Simpler network – “flat”
Pseudowire - Cons

- Latency and overhead penalties
- Network synchronization

- Timing over packet (IEEE 1588)
- Differential timing (e.g. GPS)
Copper Wires
Ethernet over Copper (EoCu)

- IEEE 802.3ah – Ethernet over copper wiring in the local loop
 - 10PASS-TS: 10 Mbps to 2,500 ft
 - 2BASE-TL: 5.7 Mbps to 18,000 ft
- Bonding
 - 1 to 8 pairs combined as a unified physical layer, yielding virtual pipe up to 45 Mbps symmetrical
- Grooming
 - Compensating for deteriorating effects of often ancient and poorly maintained copper plant
Ethernet over Copper (EoCu)

Pros:
- Reuses existing local loop copper wiring
- Practical as wide use of Cu to cell sites
- Cost effective

Cons:
- Imperfect copper transmission medium
- Speed and distance limitations

Conclusion: Good “Mid-band Ethernet” solution for 2 to 20 Mbps in US
Fiber

- PON – Passive optical networks
 - GPON – Gigabit PON
- PTP – Direct fiber solution
GPON

- Popular for residential triple play

- Applications for cellular backhaul

 - **Pros**
 - Splits network costs across many cell sites
 - Improved CO floor space - less patch panels
 - TDM clocking support

 - **Cons**
 - Substantial fiber install costs
 - Complex trouble shooting – no visibility beyond splitter
 - Difficulty delivering high data rates to end users
Point to Point Fiber

- Connect point A with point B
- Very expensive to implement
 - Fiber trenching $100/ft

Conclusion: If available, fiber is often the best option, if it can be cost-effectively leased. If not, expensive and limited to highest ROI part of network
Wireless
Microwave Backhaul

- Point to point microwave market worth ~$4B annually
 - Strong growth in last 4 years
 - ~1 million units shipped in 2007
- >70% shipments for mobile backhaul
- ~50% cell sites worldwide connected by microwave wireless
- Ethernet microwave is fast growing segment
Decouples Cost and Capacity

- Rough pricing guide

<table>
<thead>
<tr>
<th></th>
<th>Leased line cost</th>
<th>PTP wireless link</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x T1 (6 Mbps)</td>
<td>$1,200 per month</td>
<td>$10K</td>
</tr>
<tr>
<td>16 x T1 (4 X)</td>
<td>$3,000 pm (3.5 X)</td>
<td>$15K (1.5 X)</td>
</tr>
<tr>
<td>OC-3 / Fast Eth (100-155 Mbps) (25 X)</td>
<td>$6,000 pm (5 X)</td>
<td>$25K (2.5 X)</td>
</tr>
<tr>
<td>GigE (1,000 Mbps) (100+ X)</td>
<td>$10,000 pm (8 X)</td>
<td>$35K (3.5 X)</td>
</tr>
</tbody>
</table>
Total Cost of Ownership (TCO)

- Lease costs dominate TCO
- CAPEX is a small part of TCO

Source: DragonWave 2008
Mixed Mode and IP Support

- Mixed mode transport in the Low-RAN access
- IP/MPLS transport from aggregation hub site
- High-capacity Ethernet links in High-RAN

Source: Harris Stratex, 2008
Multi-Protocol Support

Access Low-RAN
- 10-15 sites per cluster
- Native Mixed Mode
- Adaptive Modulation

Access High-RAN
- All-IP Transport (IP/MPLS)

Metro + Core
- PWE3
- BSC (2G)
- RNC (3G)
- MME (LTE)
- S-GW (LTE)

Source: Harris Stratex, 2008
Limitations - Rain Fade

Propagation

Typical Microwave Availability

Average Guaranteed Wireline Availability

CIRCUIT LENGTH (MILES)

6 GHz 11 GHz 18 GHz 23 GHz

1-Way Outage, Min/Year

526 (8.7 Hours)
HISTORY'S FIRST WIRELESS SIGNAL INTERFERENCE
Significant Product Innovation

- Adaptive modulation
- All outdoor, small form factor devices
- Opening of new bands for ultra-high capacity systems
Wireless Freq Allocations

- Microwave bands have channel sizes up to 50 MHz
 - Limits practical data rates to 200 Mbps
- Millimeter-wave bands have 100x greater channel sizes to 5 GHz
 - Gbps and beyond data rates possible
 - Shorter distance transmission
Other Applications
Conclusions
Dynamic Marketplace

- Cellular Trends
 - Mobile ↔ Broadband
 - Data rates increasing
 - Consumer wants / needs
 - Technology advances
 - Subscribers increasing
 - Role of developing countries
 - CAPEX and OPEX costs rising

- Backhaul Challenges
 - Bring Ethernet to all cell sites
 - Convergence – support 2G, 3G and 4G at same site
 - Minimize capital and $/bit expenses
 - Maintain high QoS, latency, jitter, sync, etc
 - Migrate legacy services to packet
Potential Solutions

- Pseudowires
 - Convergence of multiple protocols over Ethernet transport
 - Latency and clocking issues

- Ethernet over copper
 - Reuse of existing infrastructure
 - Bandwidth and resiliency issues

- Ethernet over fiber
 - Increased bandwidth and scalability, supports exponential demand
 - Expensive and not widely available

- Ethernet over wireless
 - Multiple flexible and scalable approaches, bypassing wireline providers
 - Distance limitations
One Possible Progression?

- **Near term:**
 - Reuse as much of existing infrastructure as possible
 - Migrate to Ethernet where possible in high ROI spots
 - Install owned or leased Ethernet at green field sites
 - Significantly lower leasing costs as demand rises

- **Long term:**
 - Owned fiber & wireless Ethernet backhaul
 - Best economics, with scalability and future proofing
Thank You For Listening!

AJIS LLC
Wireless Technology Consulting

Jonathan Wells PhD MBA
President

2470 Sanderling Drive
Pleasanton, CA 94566
Cell: +1 925 200 5124
jonathan@ajisconsulting.com
www.ajisconsulting.com